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Extra Credit Practice Final

This practice exam is worth 5 extra credit points.  We will not give points based on whether or 
not your answers are correct, but rather on whether or not you have made a good-faith effort to 
answer all the questions.  On the honor code, we assume that any answers you submit for these 
problems represent a good, honest effort on your part.

We will not release solutions to this practice exam.  If you have any questions about it, feel free to 
stop by office hours with questions.  It is perfectly fine to work on these problems in a group or  
even to ask questions about them at the review session, but I strongly suggest taking this practice 
exam under exam conditions.

The final exam is open-book, open-note, open-computer, but closed-network.  This means that if 
you want to have your laptop with you when you take the exam, that's perfectly fine, but you 
must not use a network connection.  You should only use your computer to look at notes you've 
downloaded in advance.

Normally, I would leave extra space between problems so that you would have room to write out 
your  answers,  but  to  save paper  I  have tried to  minimize  the amount  of  blank space in  this 
handout.  You do not need to bring extra scratch paper to the final exam, but I would suggest 
doing so in case you want to try out various solutions to the problems.

You will have three hours to complete this final exam.  There will be 180 total points, which 
corresponds to roughly one point per question.  The exam will be worth 25% of your total grade 
in this course.

Question Points Grader

(1) Induction (20) /20

(2) Regular Languages (25) /25

(3) Context-Free Languages (25) /25

(4) R and RE Languages (70) /70

(5) P and NP (40) /40

(180) /180

(Note that these points are to give a relative sense of the weights 
on the final exam and have no bearing on extra credit points)

Optional, but due just before you take the final exam.



Problem 1: Induction (20 points total)

Recall that we can compactly express large sums using the notation

∑
i=1

n

ai=a1+a2+...+an

We can use similar notation for products:

∏
i=1

n

ai=a1⋅a2⋅...⋅an

Just as the empty sum of no numbers is defined to be 0, the empty product of no numbers is defined to 
be 1.

Consider a sequence of n + 1 real numbers x0,  x1,  x2, …, xn, where n ≥ 0 and each xi > 0.  Prove, by 
induction, that

∏
i=1

n x i

x i−1

=
xn

x0

Problem 2: Regular Languages (25 points total)

Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or                       
 w has odd length and has the form On  }

For example, EE  ∈ PARITY, OOOOO  ∈ PARITY, EEEE  ∈ PARITY, and ε  ∈ PARITY, but EEE  ∉ PARITY, 
EO  ∉ PARITY, and OOOO  ∉ PARITY.

(i) Regular Expressions (8 Points)

Write a regular expression for PARITY.

(ii) Finite Automata (7 Points)

Design a DFA that accepts PARITY.



(iii) The Pumping Lemma (10 Points)
 
Consider the following language over the alphabet Σ = {0, 1}:

TWICE = { ww | w  Σ* }∈

For  example,  0101  ∈ TWICE,  001001  ∈ TWICE,  1111  ∈ TWICE,  and  ε   ∈ TWICE,  but
01  ∉ TWICE.

Using the pumping lemma for regular languages, prove that TWICE is not regular.

Problem 3: Context-Free Languages (25 points total)

(i) Designing CFGs (10 Points)

On Problem Set 5 and 6, you explored the language ADD over the alphabet {  1,  +,  = }, which was 
defined as follows:

ADD = { 1m+1n=1m+n | m, n   }∈ℕ

Consider the following generalization of ADD, which we will call MULTIADD, which consists of all 
strings describing unary encodings of two sums that equal one another.  For example:

1 + 3 = 4 would be encoded as 1+111=1111

4 = 1 + 3 would be encoded as 1111=1+111

2 + 2 = 1 + 3 would be encoded as 11+11=1+111

2+0+2+0=0+4+0 would be encoded as 11++11+=+1111+

0=0 would be encoded as =

Notice that there can be any number of summands on each side of the =, but there should be exactly 
one = in the string; thus 1=1=1  ∉ MULTIADD.

Write a CFG that generates MULTIADD.

ii) Designing DPDAs (15 Points)
 
Consider the following language over the alphabet Σ = {0, 1}:

LE = {0m1n | m, n   and ∈ℕ m ≤ n }

Informally, LE is the language of strings of some number of 0s followed by at least as many 1s.  For 
example, 011  ∈ LE, 11  ∈ LE, ε  ∈ LE, but 00011  ∉ LE and 01110  ∉ LE. 

Design  a  deterministic PDA that  recognizes  LE.   Recall  that  a  PDA is  deterministic  if  for  each 
state/input/stack combination, there is at most one transition that can be followed at any time.



Problem 4: R and RE Languages (70 points total)

(i) Same Difference? (12 Points)

Prove or disprove: If L1  ∈R and L2  ∈ R, then L1 – L2  ∈R.

(ii) Not the Same Difference? (13 Points)

 
Prove or disprove: If L1  ∈RE and L2  ∈ RE, then L1 – L2  ∈RE.
 
(iv) Accept Most of the Strings! (25 Points)

Consider the language

AMOST = { ⟨M, n  | M accepts all strings of length at least ⟩ n }

Prove that AMOST is undecidable by reducing ATM to it.

(v) Accept Most of the Strings!  (Take Two) (20 Points)

Prove that AMOST is unrecognizable by reducing AALL to it.  As a reminder:

AALL = { M  | (⟨ ⟩ ℒ M) = Σ* }



Problem 5: P and NP (45 points total)

(i) Closure under Complement (15 Points)

 
Prove that P is closed under complementation.  (Hint: Show how to turn a polynomial-time decider for  
a language L into a polynomial-time decider for the language L)

While we know that  P is closed under complementation, it is unknown whether  NP is closed under 
complementation.  The class of problems that are the complements of problems in NP is an interesting 
one, and it is so important that we give it the name co-NP.  Formally, co-NP is the set of languages L 
such that L  ∈ NP.  For example, the language

SAT = { φ | φ is a satisfiable propositional logic formula }

is known to be in NP, while its complement

SAT = { φ | φ is not a syntactically correct propositional logic formula, or φ is unsatisfiable }

is contained in co-NP.

Just as the relation between P and NP is unknown, the relation between NP and co-NP is also unknown 
and is a major open problem in complexity theory.  However, we do know of one interesting result 
about how P, NP, and co-NP are connected.

(ii) NP and co-NP (10 Points)

 
Prove that if NP ≠ co-NP, then P ≠ NP.



(iii) What Do We Know? (20 Points)

 
Below are ten statements, some of which are definitely true, some of which are definitely false, and 
some of which are not necessarily true or false (either because the truth of the statement depends on the 
choice of some particular language, or because the statement depends on an open problem such as 
whether P = NP).  For each of these statements, write a T if the statement is always true, an F if the 
statement is always false, and a ? if with what is provided the statement cannot be definitively shown to 
be true or false.

If L  ∈ P, then L  ∈ NP.

If L  ∈NP, then L  ∈ P.

If L is NP-complete and L' ≤P L, then L'  ∈ P.

If L is NP-complete and L' ≤P L, then L'  ∈NP.

If L is NP-complete and L' ≤P L, then L'  ∈NPC.

If 3SAT is decidable in time O(n10), then P = NP.

If 3SAT is not decidable in time O(n10), then P ≠ NP.

There exists an NP language that is not RE.

There exists an NP-complete language that is not RE.

There exists an NP-hard language that is not RE.


